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Abstract

We discuss the connection between determinants of modified matching matrices and the
matching polynomial as well as give a recursive algorithm utilizing these determinants to
compute the matching polynomial of any graph.

Introduction

This paper assumes that the reader is familiar with the basics of graph theory. In this paper’s
context, graphs are finite, undirected graphs with no loops or multiple edges.

First, some definitions:
A circuit cover of a graph G with vertex set V (G) is a subgraph H of G such that

V (H) = V (G) and each connected component of H is a circuit of some order (we define
isolated vertices as circuits of order 1 and isolated edges as circuits of order 2.)

A matching of a graph is a circuit cover with all circuits having order no greater than
2. A matching can also be thought of as a spanning subgraph with only isolated edges and
vertices. If a matching has k edges, that matching is called a k-matching.

Let G be a graph with n vertices, vertex set V (G), and edge set E(G). Let mk be the
number of k-matchings of G, and let w1 and w2 be complex variables. Then we define

M(G) =
bn/2c∑
k=0

mkw
n−2k
1 wk

2

as the matching polynomial of G, where bn/2c is the largest integer less than n/2. It is
easy to see that if a matching has k edges, it must have n− 2k isolated vertices, since each
edge contains two vertices. So the matching polynomial is a summation of the product of
the terms associated with matching covers (w1 being associated with vertices and w2 being
associated with edges.) It is worth noting that this is just one definition of the matching
polynomial, particularly as defined by E. J. Farrell [1]. An alternate definition will be dis-
cussed further on.

Both Farrell and S. A. Wahid have explored many facets of the matching polynomial
in detail, in particular linking the matching polynomial to determinants of various matrices
associated with graphs. One such matrix is as follows:

Let the matching matrix [2] A(G) of a graph G with n vertices be defined as the n×n
matrix with the entry in row i and column j denoted by [A]i,j and

[A]i,j =


w1 if i = j√
w2 if i > j and ei,j ∈ E(G)

−√w2 if i < j and ei,j ∈ E(G)
0 if i 6= j and ei,j 6∈ E(G)

Wahid has shown that computing the determinant of this matching matrix yields the
matching polynomial for graphs with no even circuits [5]. The question arises: Is it possible
to use these determinants to compute any graph’s matching polynomial? The answer requires
a bit more elaboration of Wahid’s result, as well as some facts about determinants.
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Fact 1 Let |A(G)| be the determinant of A(G).1 Then |A(G)| can be computed as

|A(G)| =
∑

σ∈Sn

sgn(σ)
∏

1≤k≤n

[A]k,σ(k),

where Sn is the set of all permutations on n elements and where sgn(σ) = 1 if σ is even and
sgn(σ) = −1 if σ is odd [5].

This definition of the determinant as a sum over permutations gives rise to an interesting
correllation to circuit covers of G. Any permutation can be written as a product of disjoint
permutation cycles. Thus, each permutation of n elements can be thought of as corresponding
to a particular circuit cover on |V (G)| = n vertices. Not only that, but there is an additional
link between the nonzero terms in the determinant sum of |A(G)| and the circuit covers that
exist in G.

Fact 2 Let σ be a permutation in Sn. Let bσ = sgn(σ)
∏

1≤k≤n[A]k,σ(k); that is, the term
in the determinant sum of A(G) corresponding to σ. Then bσ is nonzero if and only if the
circuit cover corresponding to σ exists in G.

This is fairly straightforward but tedious to prove, so we will illustrate this concept with
an example.

Example:
Let graph G be such that V (G) = {1, 2, 3, 4} and E(G) = {(1, 2), (2, 3), (3, 4), (4, 1), (1, 3)}.

(Visually, this can be represented as a rectangle with an edge connecting one set of opposite
diagonal vertices.) Then

A(G) =

∣∣∣∣∣∣∣∣∣
w1

√
w2

√
w2

√
w2

−√w2 w1
√

w2 0
−√w2 −√w2 w1

√
w2

−√w2 0 −√w2 w1

∣∣∣∣∣∣∣∣∣ .

Look at permutation σ = (12)(34). (Hence, σ(1) = 2, σ(2) = 1, σ(3) = 4, and σ(4) = 3.)
Note that this permutation corresponds to a circuit cover of G with the two isolated edges
(1, 2) and (3, 4). Then

bσ = sgn(σ)[A]1,2[A]2,1[A]3,4[A]4,3 = (
√

w2)(−
√

w2)(
√

w2)(−
√

w2) = w2
2.

Notice that this permutation corresponds to a matching cover of G and its b-term yields the
matching term of the cover (w2

2). In fact, this is true of all permutations corresponding to
matching covers and is one of the main components to Wahid’s proof of his result.

Now look at permutation σ = (1324) (so σ(1) = 3, σ(2) = 4, σ(3) = 2, and σ(4) = 1),
and note that this does not correspond to a circuit cover of G. Then

bσ = sgn(σ)[A]1,3[A]2,4[A]3,2[A]4,1 = −(
√

w2)(0)(−
√

w2)(−
√

w2) = 0.

1A notational note: In this paper, vertical lines around a matrix (|A(G)|) signify the determinant of that
matrix, and vertical lines around a set (|E(G)|) signify the cardinality of that set.
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So whenever we have a permutation that does not correspond to a circuit cover of G, at least
one of the terms in the bσ product will be 0 since one of the mappings i → σ(i) corresponds
to a hypothetical edge that is not there.

Now consider the circuit cover composed of the single circuit of order 4, (1234). This
corresponds to permutations σ1 = (1234) and σ2 = (4321). Then

bσ1 = sgn(σ1)[A]1,2[A]2,3[A]3,4[A]4,1 = −(
√

w2)(
√

w2)(
√

w2)(−
√

w2) = w2
2

and

bσ2 = sgn(σ2)[A]1,4[A]2,1[A]3,2[A]4,3 = −(
√

w2)(−
√

w2)(−
√

w2)(−
√

w2) = w2
2.

Thus, any permutation σ that corresponds with a circuit cover of G will be such that
bσ 6= 0. However, we must be careful, as different b-terms in the determinant sum may cancel
each other out due to sign difference.

Actually, this cancellation is exactly how Wahid’s result arises, as each circuit cover
containing proper odd circuits will generate two b-terms, one positive and one negative, and
will thus cancel out in the determinant sum, illustrated in the following example:

Consider the circuit cover (123)(4) composed of one circuit of order 3 and one of order
1. This cover corresponds to permutations σ1 = (123)(4) and σ2 = (321)(4). Then

bσ1 = sgn(σ1)[A]1,2[A]2,3[A]3,1[A]4,4 = (
√

w2)(
√

w2)(−
√

w2)(w1) = −
√

w2
3
w1

and

bσ2 = sgn(σ2)[A]1,3[A]2,1[A]3,2[A]4,4 = (
√

w2)(−
√

w2)(−
√

w2)(w1) =
√

w2
3
w1.

But these terms are opposites and will thus cancel when added together in the deter-
minant sum. This cancellation occurs in any permutations associated with a circuit cover
containing a proper odd circuit. Hence, the contribution of terms corresponding with circuit
covers containing proper odd circuits is negated in the determinant sum. So in a graph with
no proper even circuits, the only nonzero terms remaining in the output of the determinant
are those corresponding to matching covers, and thus the determinant yields the matching
polynomial. However, if our graph has proper even circuits, then we cannot be guaranteed
that this is the case; we usually end up with unwanted, uncanceled terms in the determinant
sum.

Main Concept

What if we look at a single edge of G? If we “mark” an edge in the matching matrix, what
can we determine from the outcome of the determinant? It turns out that, by marking an
edge within the matrix, we can keep track of the type of permutations, and thus the type
of circuit covers, that it is involved in. But first of all, we look at the types of possible
permutations and how they correspond to circuit covers.

Select edge e = (u, v). Partition Sn such that Sn = S ∪ T ∪N , where
S is the set of permutations σ in Sn such that σ(u) = v and σ(v) = u,
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T is the set of permutations σ in Sn such that either σ(u) = v and σ(v) 6= u or σ(u) 6= v
and σ(v) = u,

and N is the set of permutations σ in Sn such that σ(u) 6= v and σ(v) 6= u.

Expressing σ as a product of disjoint cycles yields the following structures:
If σ ∈ S, then σ = (uv)t, where t is a permutation on the n−2 elements of V (G)−{u, v}.

Thus, σ corresponds to a circuit cover of G that contains e = (u, v) as an isolated edge.
If σ ∈ T , then σ = (uvw1 . . . wk)p, k ≥ 1 or σ = (vuw1 . . . wk)p, k ≥ 1, where p is a

permutation on the elements not given in the first cycle and wi is some vertex in V (G).
Thus, σ corresponds to a circuit cover of G that contains e as part of a proper circuit.

If σ ∈ N , then σ = c1c2 . . . ck, where the ci are disjoint cycles and, for each 1 ≤ i ≤ k,
ci 6= (uv), ci 6= (uv . . . l), and ci 6= (vu . . . l). Thus, σ corresponds to a circuit cover of G that
does not include e as an edge in the cover.

The advantage of distinguishing these permutations is that we know that, when σ is
in T , the corresponding term in the determinant sum does not contribute a valid term
to the matching polynomial, as these permutations contain proper cycles (which, in turn,
correspond to covers with proper circuits.) The trick is, how do we differentiate between
terms in the output of the determinant? That is, how do we know particular terms arose
from permutations from S, T , or N?

Marked Matrix

Given graph G with matching matrix A(G), choose an edge e = (u, v) ∈ E(G) and call it
the marked edge of G. Let the marked matrix of G with marked edge e = (u, v) and
complex number a be denoted Ae(G, a), with the entry in row i and column j denoted by
[Ae]i,j. Define this matrix by

[Ae]u,v = a[A]u,v

[Ae]v,u = a[A]v,u

[Ae]i,j = [A]i,j if (i, j) 6= (u, v) and (i, j) 6= (v, u).
So, essentially, the marked matrix is A(G) with [A]u,v and [A]v,u “marked by” a. The

following theorem lets us use the marked matrix to distinguish from which permutation set
(S, T , or N) a particular term in the determinant output arose. We will break part of the
theorem into three lemmas:

Given a graph with |V (G)| = n and a marked matrix Ae(G, a), define bσ = sgn(σ)
∏

1≤k≤n[Ae]k,σ(k),
where σ ∈ Sn.

Lemma 1 If σ ∈ S, then bσ = ±a2wp
1

√
w2

q for some integers p and q.

Proof
Since σ ∈ S, then σ(u) = v and σ(v) = u.
So bσ = sgn(σ)

∏
1≤k≤n[Ae]k,σ(k)
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= sgn(σ)[Ae]u,σ(u)[Ae]v,σ(v)
∏

t 6= u, v
1 ≤ t ≤ n

[Ae]k,σ(k)

= sgn(σ)[Ae]u,v[Ae]v,u
∏

t 6= u, v
1 ≤ t ≤ n

[Ae]k,σ(k)

= sgn(σ)a[A]u,va[A]v,u)
∏

t 6= u, v
1 ≤ t ≤ n

[A]t,σ(t) (By definition of the marked matrix)

= sgn(σ)a2[A]u,v[A]v,u)
∏

t 6= u, v
1 ≤ t ≤ n

[A]t,σ(t)

= ±a2wp
1

√
w2

q.

We can conclude this because the only entries of A(G) are w1,
√

w2, and −√w2.

Lemma 2 If σ ∈ T , then bσ = ±awp
1

√
w2

q for some integers p and q.

Proof
Since σ ∈ T , then σ(u) = v and σ(v) 6= u, or σ(u) 6= v and σ(v) = u.
Without loss of generality, suppose σ(u) = v and σ(v) 6= u.
Then bσ = sgn(σ)

∏
1≤k≤n[Ae]k,σ(k)

= sgn(σ)[Ae]u,σ(u)[Ae]v,σ(v)
∏

t 6= u, v
1 ≤ t ≤ n

[Ae]k,σ(k)

= sgn(σ)[Ae]u,v[Ae]v,σ(v) 6=u
∏

t 6= u, v
1 ≤ t ≤ n

[Ae]k,σ(k)

= sgn(σ)a[A]u,v[A]v,σ(v) 6=u
∏

t 6= u, v
1 ≤ t ≤ n

[A]t,σ(t) (By definition of the marked matrix)

= ±awp
1

√
w2

q.

Similar to the lemma above, we can conclude this because the only entries of A(G) are w1,√
w2, and −√w2.

Lemma 3 If σ ∈ N , then bσ = ±wp
1

√
w2

q for some integers p and q.

Proof
Since σ ∈ N , then σ(u) 6= v and σ(v) 6= u.
Then bσ = sgn(σ)

∏
1≤k≤n[Ae]k,σ(k).

(u, σ(u)) 6= (u, v) and (v, σ(v)) 6= (v, u), so
bσ = sgn(σ)

∏
1≤k≤n[A]k,σ(k) (Definition of the marked matrix.)

= ±wp
1

√
w2

q. Again, we can conclude this because the only entries of A(G) are w1,
√

w2,
and −√w2.

Now we can prove our theorem:
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Theorem 1 Given graph G and marked matrix Ae(G, a) with marked edge e = (u, v), let bσ

be the term in |Ae(G, a)| corresponding to permutation σ. Then
σ ∈ S if and only if bσ = ±a2wp

1

√
w2

q for some non-negative integers p and q.
σ ∈ T if and only if bσ = ±awp

1

√
w2

q for some non-negative integers p and q.
σ ∈ N if and only if bσ = ±wp

1

√
w2

q for some non-negative integers p and q.

Proof
The above three lemmas prove that one way of each implication holds. And because

there are only three possibilities for σ, that is, σ ∈ S, σ ∈ T , or σ ∈ N , and the union of
these three sets is Sn, we can make each of the previous lemmas into an if and only if.

Fundamental Marked Matrix Theorem

With these results, we can now formulate a theorem that will form the basis for our matching
polynomial algorithm. Once again, we will split up this theorem in the form of three lemmas,
each dealing with a different permutation type. But first we must state some basic assertions
and hypotheses.

The following assumptions apply to the three following lemmas as well as the Fundamen-
tal Theorem:

Given graph G with |E(G)| ≥ 1 and |V (G)| ≥ 3, matching matrix A(G) and marked
matrix Ae(G, a) with marked edge e = (u, v), define subgraphs G′ = G − {e} and G′′ =
G − {u, v} (based on the marked edge.) (We give the stipulation that |V (G)| ≥ 3 so that
we can build a non-null matching matrix of G′′.)

Now again define bσ = sgn(σ)
∏

1≤k≤n[Ae]k,σ(k), where σ ∈ Sn. Then
|Ae(G, a)| =

∑
σ∈S bσ +

∑
σ∈T bσ +

∑
σ∈N bσ. (This follows from T , S, and N forming a

partition on Sn.)
Also, |Ae(G, 1)| = |A(G)| (This follows from the fact that Ae(G, 1) = A(G) by the

definition of the marked matrix.)

Lemma 4 If a = 1 so that Ae(G, a) = Ae(G, 1) = A(G), then
∑

σ∈S bσ = w2|A(G′′)|.

Proof
We know that

∑
σ∈S bσ =

∑
σ∈S sgn(σ)

∏
1≤k≤n[Ae]k,σ(k).

All σ in S are of the form σ = (uv)t where t is a permutation on the n − 2 elements of
V (G)−{u, v}. Let R be the set of all permutations t on the set V (G)−{u, v}. It is easy to
see that {(uv)t|t ∈ R} = S. Note that sgn(σ) = −sgn(t) for each t corresponding to σ ∈ S.

Let t be such a permutation on the n − 2 elements of V (G) − {u, v} so that σ = (uv)t.
Then∑

σ∈S bσ =
∑

t∈R sgn(σ)[Ae]u,σ(u)[Ae]v,σ(v)
∏

k 6= u, v
1 ≤ k ≤ n

[Ae]k,σ(k)

=
∑

t∈R sgn(σ)[Ae]u,v[Ae]v,u
∏

k 6= u, v
1 ≤ k ≤ n

[A]k,t(k)

=
∑

t∈R sgn(σ)a
√

w2(−a
√

w2)
∏

k 6= u, v
1 ≤ k ≤ n

[A]k,t(k)
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=
∑

t∈R sgn(σ)(−a2w2)
∏

k 6= u, v
1 ≤ k ≤ n

[A]k,t(k)

Using a = 1 so that Ae(G, a) = Ae(G, 1) = A(G), we have, for |A(G)|,∑
σ∈S bσ = w2

∑
t∈R sgn(t)

∏
k 6= u, v
1 ≤ k ≤ n

[A]k,t(k).

But
∑

t∈R sgn(t)
∏

k 6= u, v
1 ≤ k ≤ n

[A]k,t(k) = |A(G− {u, v})| = |A(G′′)|.

So w2
∑

t∈R sgn(t)
∏

k 6= u, v
1 ≤ k ≤ n

[A]k,t(k) = w2|A(G′′)|.

Thus, for |A(G)| = |Ae(G, 1)|, ∑
σ∈S

bσ = w2|A(G′′)|.

Lemma 5 For |A(G)| = |Ae(G, 1)|, ∑
σ∈N bσ = |A(G′)|.

Proof
By Theorem 1, every term of

∑
σ∈S bσ for Ae(G, a) has the form ±a2wp

1

√
w2

q for some
integers p and q and every term of

∑
σ∈T bσ has the form ±awl

1

√
w2

m for some integers l and
m. Thus, setting a = 0 will result in∑

σ∈S bσ = 0 and∑
σ∈T bσ = 0.

Since |Ae(G, a)| = ∑
σ∈S bσ +

∑
σ∈T bσ +

∑
σ∈N bσ,

|Ae(G, 0)| = 0 + 0 +
∑

σ∈N bσ =
∑

σ∈N bσ.
But Ae(G, 0) = A(G− {e}) by the structure of Ae(G, a).
So |Ae(G, 0)| = |A(G− {e})| = |A(G′)|.
Note that, since terms of

∑
σ∈N bσ have the form ±wp

1

√
w2

q for some integers p and q,
then

∑
σ∈N bσ for |Ae(G, 1)| = |A(G)| is the same as

∑
σ∈N bσ for |Ae(G, 0)|.

Thus, for |A(G)|, ∑
σ∈N

bσ = |A(G′)|.

Lemma 6
∑

σ∈T bσ = Im(|Ae(G, i)|).

Proof
Again, every term of

∑
σ∈S bσ has the form ±a2wp

1

√
w2

q for some integers p and q, every
term of

∑
σ∈T bσ has the form ±awl

1

√
w2

m for some integers l and m, and every term of∑
σ∈N bσ has the form ±wr

1

√
w2

s for some integers r and s.
Now set a = i and look at |Ae(G, i)| =

∑
σ∈S bσ +

∑
σ∈T bσ +

∑
σ∈N bσ. The terms of∑

σ∈N will not have any imaginary component, as they do not contain any a’s. The terms
of

∑
σ∈S bσ will simply gain an i2 = −1 in place of the a2. Finally, the terms of

∑
σ∈T bσ will

all gain an i in place of the a. Thus, the only imaginary components of |Ae(G, i)| will arise
from

∑
σ∈T bσ, and every term in

∑
σ∈T bσ will be imaginary. Thus, for |Ae(G, 1)| = |A(G)|,∑

σ∈T

bσ = Im(|Ae(G, i)|).
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Theorem 2 Given graph G with |E(G)| ≥ 1 and |V (G)| ≥ 3, matching matrix A(G) and
marked matrix Ae(G, a) with marked edge e = (u, v), define subgraphs G′ = G − {e} and
G′′ = G− {u, v} (based on the marked edge.) Then

|A(G)| = w2|A(G′′)|+ |A(G′)|+ Im(|Ae(G, i)|)

Proof
We already know that |Ae(G, 1)| = ∑

σ∈S bσ +
∑

σ∈T bσ +
∑

σ∈N bσ, and that |Ae(G, 1)| =
|A(G)|.

Hence, with this information and the above lemmas,

|Ae(G, 1)| =
∑
σ∈S

bσ +
∑
σ∈T

bσ +
∑
σ∈N

bσ

can be rewritten as

|A(G)| = w2|A(G′′)|+ |A(G′)|+ Im(|Ae(G, i)|).

Thus, we can now break down the determinant of a matching matrix into determinants
of subgraphs. This result is very similar to the Fundamental Edge Theorem of Matching
Theory, which states, given a graph G and subgraphs G′ and G′′ as previously defined, that
|M(G)| = w2|M(G′′)|+ |M(G′)| [1]. We will use this basic idea in the following algorithm.

Algorithm

Now that we’ve set up the necessary concepts and theorems, we can address the main goal of
this paper: constructing the matching polynomial of a generalized graph using determinants.

Theorem 3 Let G be a graph with |E(G)| ≥ 1. For each subgraph H of G with |E(H)| ≥ 1,
choose one edge (in H) to be associated with H. Call this edge the splitting edge of H
and denote it eH . Let BG be a set of subgraphs of G, constructed in the following way:

Add G to BG. If |A(G)| = M(G), we are done. If not, let eG = (u, v) be the splitting
edge of G. Create subgraphs G′′ = G−{u, v} and G′ = G−{eG}, adding both to BG. Repeat
this process for the resulting subgraphs until |A(H)| = M(H), in which case do not split H
and do not add H to BG.

Then
M(G) = |A(G)| −

∑
Γ∈BG

wj
2Im(|AeΓ

(Γ, i)|),

where eΓ is the splitting edge of Γ and j = 1
2
|V (G)− V (Γ)|.
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Proof
We will perform a proof by induction on the number of edges in G.

Base Case
Let 1 ≤ |E(G)| ≤ 4. Assign G a set of subgraphs BG in the manner described above.
Case 1: |E(G)| ≤ 3. Then G cannot contain any proper even circuits (order 4 or greater)

and hence |A(G)| = M(G) by Wahid’s previously stated result. So BG = {G}. Let eG be
the splitting edge of G. We know from a previous lemma that Im(|AeG

(G, i)) =
∑

σ∈T bσ

for |A(G)|. But permutations σ ∈ T correspond to circuit covers of G containing proper
circuits. Since we know that the total contribution of proper odd circuits is 0 in |A(G)| and
G contains no proper even circuits, then by Fact 2, Im(|AeG

(G, i)) = 0. Hence, M(G) =
|A(G)| − Im(|AeG

(G, i)) and our theorem holds.
Case 2: |E(G)| = 4. Then the creation of BG looks like this: Add G to BG. Let

eG = (u, v) be the splitting edge of G. Create G′ and G′′. Then |E(G′)| ≤ 3 and |E(G′′)| ≤ 3.
So G′ and G′′ cannot contain any proper even circuits. Thus, by Wahid’s previously stated
result, |A(G′)| = M(G′) and |A(G′′)| = M(G′′). So G′ is not in BG and G′′ is not in BG and
neither G′ nor G′′ is split any further. Thus, BG = {G}.

Now we use our fundamental theorem:
Let eG be our marked edge. Then
|A(G)| = w2|A(G′′)|+ |A(G′)|+ Im(|AeG

(G, i)|)
= w2M(G′′) + M(G′) + Im(|AeG

(G, i)|)
= M(G) + Im(|AeG

(G, i)|) (By the Fundamental Edge Theorem of Matching Theory)
= M(G) +

∑
Γ∈BG

wj
2Im(|AeΓ

(Γ, i)|). (j = 1
2
|V (G)− V (G)| = 0).

Thus, the theorem holds for 1 ≤ |E(G)| ≤ 4.

Inductive Step
Suppose this theorem holds for |E(G)| ≤ k.
Let |E(G)| = k + 1. Pick a splitting edge for each subgraph of G with at least one edge

and construct BG.
Look at

|A(G)| = w2|A(G′′)|+ |A(G′)|+ Im(|AeG
(G, i)|),

where eG = (u, v) is the splitting edge of G.
Construct BG′ and BG′′ using the splitting edges of each subgraph already assigned. Then

BG′ is the set of subgraphs of G′ that are in BG and BG′′ is the set of subgraphs of G′′ that
are in BG. So BG′ ∪BG′′ = BG − {G}.

We know that |E(G′)| ≤ k and |E(G′′)| ≤ k by the construction of G′ and G′′. So the
theorem holds for both G′ and G′′. Thus,

|A(G)| = w2

M(G′′) +
∑

Γ∈BG′′

(
wj′′

2 Im (|AeΓ
(Γ, i)|)

)
+

M(G′) +
∑

Γ∈BG′

(
wj′

2 Im (|AeΓ
(Γ, i)|)

) + Im (|AeG
(G, i)|) ,

where j′ = 1
2
|V (G′)− V (Γ)| for any Γ ∈ BG′ and j′′ = 1

2
|V (G′′)− V (Γ)| for Γ ∈ BG′′ .

9



We can rearrange this expression to

|A(G)| = w2M(G′′)+M(G′)+w2

∑
Γ∈BG′′

wj′′

2 Im(|AeΓ
(Γ, i)|))+

∑
Γ∈BG′

wj′

2 Im(|AeΓ
(Γ, i)|)+Im(|AeG

(G, i)|)

Hence,

|A(G)| = M(G) + w2

∑
Γ∈BG′′

wj′′

2 Im(|AeΓ
(Γ, i)|) +

∑
Γ∈BG′

wj′

2 Im(|AeΓ
(Γ, i)|) + Im(|AeG

(G, i)|)

by the Fundamental Edge Theorem of Matching Theory.
Now note

w2

∑
Γ∈BG′′

wj′′

2 Im(|AeΓ
(Γ, i)|) =

∑
Γ∈BG′′

wj′′+1
2 Im(|AeΓ

(Γ, i)|).

Let j = 1
2
|V (G) − V (Γ)|, where Γ is a subgraph of G. Suppose Γ is a subgraph of G′′.

1
2
|V (G)− V (G′′)| = 1, so j = 1

2
|V (G)− V (G′′)|+ 1

2
|V (G′′)− V (Γ)| = 1 + j′′.

Suppose Γ is a subgraph of G′. 1
2
|V (G)−V (G′)| = 0, so j = 1

2
|V (G)−V (G′)|+ 1

2
|V (G′)−

V (Γ)| = 0 + j′ = j′.
Taking the fact that BG′ ∪ BG′′ = BG − {G} into account, we can combine the sums,

obtaining

w2

∑
Γ∈BG′′

wj′′

2 Im(|AeΓ
(Γ, i)|) +

∑
Γ∈BG′

wj′

2 Im(|AeΓ
(Γ, i)|) =

∑
Γ∈BG−{G}

wj
2Im(|AeΓ

(Γ, i)|).

So
|A(G)| = M(G) +

∑
Γ∈BG−{G}

wj
2Im(|AeΓ

(Γ, i)|) + Im(|AeG
(G, i)|)

.
We can include the last term in our sum if we add G to the set BG−{G}, since 1

2
|V (G)−

V (G)| = 0:

|A(G)| = M(G) +
∑

Γ∈BG

wj
2Im(|AeΓ

(Γ, i)|)

Thus,
M(G) = |A(G)| −

∑
Γ∈BG

wj
2Im(|AeΓ

(Γ, i)|)

for graphs with |E(G)| = k + 1.
Hence, by the principal of mathematical induction, this theorem holds for any graph with

at least one edge.
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Conceptual Discussion

The main purpose of this algorithm is to counteract the effect of circuit covers with proper
even circuits on the determinant of the matching matrix. |A(G)| will equal the matching
polynomial plus the contributions of circuit covers with proper even circuits (Farrell and
Wahid’s construction of A(G) guarantees that terms corresponding to covers with proper odd
circuits will not contribute to |A(G)|) [5]. This algorithm computes the exact contribution of
these unwanted covers (computed by finding the imaginary component of the marked matrix
determinant with a = i), and subtracts them from |A(G)| to reach M(G).

The construction of BG was left intentionally non-specific in cutting off when subgraphs
H are such that |A(H)| = M(H) so that different implementations may be created from this
theorem. For instance, one implementation could simply remove edges until the resulting
subgraphs had 4 edges or less. Alternately, if certain information is known about the graph,
for example, which set of edges must be removed to create a spanning tree, then another
implementation could remove just those edges in the splitting edge process. Once all these
edges are removed, we know that the “base case” |A(H)| = M(H) must hold (since no
circuits remain.)

It was mildly hoped that this general algorithm would be more efficient than the standard
recursive algorithms for computing the matching polynomial. Brief estimations on compu-
tational efficiency, however, show otherwise, with the algorithm having somewhere around
factorial complexity in a general case. In particular cases, though, where we know a bit
about the graph and there are a small number of edges that, if taken away, get rid of all the
proper even circuits in the graph, there are obvious advantages to this algorithm.

Further Conclusions

Though using the matching matrix as Farrell and Wahid define it is quite valuable in cutting
down complexity through the cancellation of terms relating to odd circuits, it is worth
proving that this algorithm will work even if we use a version of the matching matrix that
has no negative numbers in it; that is, if every term that was −√w2 in the matching matrix
becomes

√
w2. Let us define this matrix as the positive matching matrix of G, denoted

A+(G), in the following way:

[A+]i,j =


w1 if i = j√
w2 if i > j and ei,j ∈ E(G)√
w2 if i < j and ei,j ∈ E(G)
0 if i 6= j and ei,j 6∈ E(G)

This proof only requires a few alterations from the one above, the main difference being
that we may get some negative coefficients on our matching terms as an end result of the
determinant. However, the coefficients will be correct (that is, match up with our definition
of the matching polynomial) except for the negative signs. Let us define the alternating
matching polynomial M−(G) as

M−(G) =
n/2∑
k=0

(−1)kmkw
n−2k
1 wk

2 .

11



(In fact, this is actually one of the alternate definitions of the matching polynomial referred
to earlier, almost identical to that given by C. D. Godsil) [4].

First, we prove that |A+(G)| = M−(G) for graphs with no proper circuits:

Theorem 4 Suppose G is a graph with no proper circuits. Then |A+(G)| = M−(G).

Proof
|A+(G)| =

∑
σ∈Sn

sgn(σ)
∏

1≤k≤n

[A+]k,σ(k)

Let bσ be the term in this sum arising from the permutation σ.
Since there are no proper circuits in G, there will be no terms in |A+(G)| corresponding to

a permutation with proper cycles. Hence, the only nonzero terms in |A+(G)| will correspond
with matching covers of G. Consider a particular matching cover type, say a k-matching.
These matchings will correspond with permutations in Sn that can be expressed as the
product of k transpositions.

Suppose k is even. Let σ correspond to a k-matching. Then σ is an even permutation,
as it can be expressed as the product of k disjoint transpositions. Then bσ = wn−2k

1 wk
2 , since

sgn(σ) = 1. Hence, when we add up all such terms corresponding to k-matchings, we will
get mkw

n−2k
1 wk

2 = (−1)kmkw
n−2k
1 wk

2 .
Now suppose k is odd. Let σ correspond to a k-matching. Then σ is an odd permutation,

as it can be expressed as the product of k disjoint transpositions. Then bσ = −wn−2k
1 wk

2 ,
since sgn(σ) = −1. Hence, when we add up all such terms corresponding to k-matchings,
we will get −mkw

n−2k
1 wk

2 = (−1)kmkw
n−2k
1 wk

2 .
Thus, |A+(G)| = M−(G).

The main idea here is that we cannot have the same type of matching cover generating
different sgn’s, so the resulting coefficients in |A+(G)| will be consistent with the matching
polynomial, with the additional structure that negative signs on matchings correspond with
odd permutations.

As for the marked version of |A+(G)|, we define it exactly the same way as before: Choose
an edge e = (u, v) ∈ E(G) and call it the marked edge of G. Let the positive marked
matrix of G with marked edge e = (u, v) and complex number a be denoted A+e(G, a), with
the entry in row i and column j denoted by [A+e]i,j. Define this matrix by

[A+e]u,v = a[A+]u,v

[A+e]v,u = a[A+]v,u

[A+e]i,j = [A+]i,j if (i, j) 6= (u, v) and (i, j) 6= (v, u).

It follows from this definition that a slightly altered version of the Fundamental Marked
Matrix Theorem still holds. That is,

Theorem 5 Given graph G with |E(G)| ≥ 1 and V (G) ≥ 3, positive matching matrix
A+(G) and positive marked matrix A+e(G, a) with marked edge e = (u, v), define subgraphs
G′ = G− {e} and G′′ = G− {u, v} (based on the marked edge.) Then

|A+(G)| = −w2|A+(G′′)|+ |A+(G′)|+ Im(|A+e(G, i)|)

12



First, it is clear that Theorem 1 still holds, since the only change we’ve made is to signs,
which are not a factor in the conclusion of the theorem. Using this result, two parts of this
theorem’s proof are identical to the unaltered version:

Proving that
∑

σ∈N bσ = |A+(G′)| goes exactly the same way, as all we have to do is show
that A+e(G, 0) =

∑
σ∈N bσ. Since the b terms corresponding with permutations from both S

and T all have a’s multiplying them, they drop out when we substitute 0 for a.
Similarly, the proof for

∑
σ∈T bσ = Im(|A+e(G, i)|) only requres the basic form of each b

term (given by our Theorem 1), so it remains the same.
The altered portion of the proof is as follows:

Lemma 7 If a = 1 so that A+e(G, a) = A+e(G, 1) = A+(G), then
∑

σ∈S bσ = −w2|A+(G′′)|

Proof
We know that

∑
σ∈S bσ =

∑
σ∈S sgn(σ)

∏
1≤k≤n[Ae]k,σ(k)

All σ in S are of the form σ = (uv)t where t is a permutation on the n − 2 elements of
V (G)−{u, v}. Let R be the set of all permutations t on the set V (G)−{u, v}. It is easy to
see that {(uv)t|t ∈ R} = S. Note that sgn(σ) = −sgn(t) for each t corresponding to σ ∈ S.

Let t be such a permutation on the n − 2 elements of V (G) − {u, v} so that σ = (uv)t.
Then∑

σ∈S bσ =
∑

t∈R sgn(σ)[A+e]u,σ(u)[A+e]v,σ(v)
∏

k 6= u, v
1 ≤ k ≤ n

[A+e]k,σ(k)

=
∑

t∈R sgn(σ)[A+e]u,v[A+e]v,u
∏

k 6= u, v
1 ≤ k ≤ n

[A+]k,t(k)

=
∑

t∈R sgn(σ)a
√

w2(a
√

w2)
∏

k 6= u, v
1 ≤ k ≤ n

[A+]k,t(k)

=
∑

t∈R sgn(σ)(a2w2)
∏

k 6= u, v
1 ≤ k ≤ n

[A+]k,t(k)

Using a = 1 so that A+e(G, a) = A+e(G, 1) = A(G), we have, for |A(G)|,∑
σ∈S bσ = w2

∑
t∈R(−sgn(t))

∏
k 6= u, v
1 ≤ k ≤ n

[A+]k,t(k)

But
∑

t∈R(−sgn(t))
∏

k 6= u, v
1 ≤ k ≤ n

[A+]k,t(k) = −|A+(G− {u, v})| = −|A+(G′′)|.

So w2
∑

t∈R(−sgn(t))
∏

k 6= u, v
1 ≤ k ≤ n

[A+]k,t(k) = −w2|A+(G′′)|.

Thus, for |A+(G)| = |A+e(G, 1)|,∑
σ∈S

bσ = −w2|A(G′′)|.

We need one more result in order to make our main algorithm work with A+(G), and
that is an altered version of the fundamental edge theorem of matching theory:

Theorem 6 Let G be a graph with |E(G)| ≥ 1. Pick an edge e ∈ E(G), and define subgraphs
G′ = G− {e} and G′′ = G− {u, v}. Then

M−(G) = −w2M−(G′′) + M−(G′)
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Proof
Essentially, M−(G′) adds up all the matching terms of M−(G) for matchings that do not

include edge e.
Similarly, w2M−(G′′) counts all the matching terms of M−(G) for matchings that do

include edge e. But since G′′ has one fewer edge than G, the sign on each matching term
will be swapped. Thus, we have to multiply w2M−(G′′) by −1 to have it correspond with
M−(G). The set of matchings including edge e and the set of matchings that do not include
edge e make up a partition on all the matchings of G. Hence,

M−(G) = −w2M−(G′′) + M−(G′)

Now the only thing left is to modify the main algorithm:

Theorem 7 Let G be a graph with |E(G)| ≥ 1. For each subgraph H of G with |E(H)| ≥ 1,
choose one edge (in H) to be associated with H. Call this edge the splitting edge of H and
denote it eH . Let BG be a set of subgraphs of G, constructed in the following way:

Add G to BG. Let eG = (u, v) be the splitting edge of G. Create subgraphs G′′ = G−{u, v}
and G′ = G− {eG}, adding both to BG. Repeat this process for the resulting subgraphs until
|A+(H)| = M−(H), in which case do not split H and do not add H to BG.

Then
M−(G) = |A+(G)| −

∑
Γ∈BG

(−w2)
jIm(|A+eΓ

(Γ, i)|),

where eΓ is the splitting edge of Γ and j = 1
2
|V (G)− V (Γ)|.

This proof will mostly go the same way it did before, with the occasional substitutions of
A+(G) and −w2 for w2. The main difference is in the base case, but that is simple enough.
If we change the base case from 1 ≤ |E(G)| ≤ 4 to 1 ≤ |E(G)| ≤ 3, it is easy to show that
the modified theorem holds.

Thus, we have generalized our algorithm even further to encompass an alternate definition
of matching matrix and of matching polynomial.

Related Algorithms

Our proven algorithm essentially marks one edge at a time to compute unwanted determinant
terms and then breaks the graph down in order to compute yet more unwanted terms until
all the terms are accounted for. Professor Mike Spivey of the University of Puget Sound
suggested to me the idea of marking all edges at once and taking the determinant of the
matching matrix. That is, if E(G) = m, construct m variables ik such that ik

2 = −1 for all
1 ≤ k ≤ m and such that each ik is associated with one edge. Define matrix O(G) by

[O(G)]u,v = ik[A]u,v if edge (u, v) ∈ E(G), where ik is the variable associated with edge
(u, v)

[O(G)]u,v = 0 if edge (u, v) is not in E(G).
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Hence, we have essentially “marked” every edge with a different variable. Now if we take
the determinant of O(G) and subtract off the “imaginary” terms (terms with ik’s still intact),
we get the alternating matching polynomial. To be more precise, M−(G) = |O(G)| − I(G),
where I(G) are the terms of |O(G)| containing an ik. This result is basically identical to a
similar one reached by Wahid, the only difference being that he uses square root signs to
delineate the unwanted terms. For a careful proof, see [5].

The problem with this “quicker” method of computing the matching polynomial is that
computing determinants of matrices with many variables is highly innefficient, computation-
ally. So we have essentially moved the complexity from the creation of a branching tree of
potentially many subgraphs to the computation of a single, very complex determinant.

Conclusion

Unfortunately, neither algorithm is particularly computationally efficient in a general case.
So the search for a more efficient algorithm to compute the matching polynomial continues.
Though we did not succeed in improving efficiency, hopefully we at least shed some more
light on the fascinating connection between determinants and the matching polynomial.
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